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ABSTRACT

A cyclic odd-even reduction algorithm for symmetric circulant
matrices is defined and a subclass of problems to which the algorithm
may be applied is identified. Also, sufficient conditions are estab-
lished which guarantee that the off-diagonal elements of the reduced

matrices converge quadratically to zero.
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I. Introduction

Recently there has been a considerable effort made to formulate,
analyze and compare methods for solving linear systems oé equations on
vector or parallel processing computers [2]. Cyclic odd-even
reduction has been found to be an effective method for solving certain
types of tridiagonal linear systems on vector processors [4, 5].

In a recent paper, Rodrigue, Madsen and Karush [ 7 ] developed a
generalization of the odd-even reduction algorithm which is applicable to
general banded systems of linear equatibns. Sufficient conditions were
established which guaranteed that a single odd-even reduction step
could be performed. However, no ciass of non-tridiagonal matrix problems
has been identified and no conditions have been established which guarantee
that the odd-even reduction algorithm can be applied in a cyclic fashion
in order to fully solve the original banded linear equation problem. This
is essential if the algorithm is to be of any practical use.

In this paper we will demonstrate how to modify the Rodrigue, Madsen
and Karush algorithm so that it can be applied to symmetric circulant
matrix problems. Moreover, we will establish that this algorithm can

be applied i

a cyclic manner to a subclass of nonsingular symmetric

circulant matrix. Also, we will establish conditions which are sufficient
to guarantee that the off-diagonal elements of the reduced matrices con-
verge quadratically to zero. This property has been previously established
for certain ciasses of tridiagonal matrix problems [ 3 ] and can be used
to terminate the solution process early, thereby saving some computation

time.



We will adopt the same vector and matrix notation as in [ 6, 7].

Of primary use will be that an nxn real matrix A will be denoted by
A=(§j) for -(n-1)< j <n-1

where for j>0, the vector éj is the j-th superdiagonal of A and

the vector E—j is the j-th subdiagonal of A. Equality, multiplica-
tion, addition and division of equal length vectors are defined component-
wise in the obvious manner. When a vector is set equal to a scalar e.g.

a,=c we mean that each component of éj equals c.

-3

I1I. Class of Problems

One of the purposes of this paper is to identify a class of linear
equation problems for which cyclic odd-even reduction may be used as a
solution process. This class of problems is a subset of the collection
of real square matrices which are commonly known as circulant matrices.

Matrices of the type

c c - o c
0 1 n-1
C Cc Cc Cc
n-1 0 1 n—-2
c c c C
n-2 n-1 0 n-3

1 2> co ]

where the ¢ are real numbers are defined to be real circulant matrices.

i
Circulants occur in a variety of applications in solving physical problems
[ 1 ]. Clearly any nxn circulant matrix has constant diagonals and is

determined by the n-tuple of numbers (co’ Cl""’cn—1) . Using the
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notation of the previous section, a matrix A==(§j) » n=1<j<n-1
is a circulant matrix if

a ,= ¢ j=1l,...,n-1

== mj
and

a,=c, j=0,1,...,n-1,

-3 3]

where (co, cl, Cn-l) is any n-tuple of real numbers.

For circulant matrices it is quite convenient to modify slightly the
matrix notation of the previous section so that each of the vectors used
to define the matrix has the same length. So if A= (:_a_j ) ,-(n-1)<j<n-1,
is a circulant matrix we extend the definition of the vectors éj as
shown below so that each vector will now have length n

a
0 % 2 n~1
c c c +. C c c
0 1 2 n-3 n-2 n-1
c c c c c M
n-1 0 1 n-3 n-2
c c c c N
n-2 n—-1 0 n-3 ~
. L ]
NG
L ] L] \W
L ] L]
c
2
c c c
? 0 1
c c .. ¢ c c c N
1 2 n-3 n-z2 n-i 0 \
\\ \‘\ =\




With this extension it is clear that an nxn matrix A= (a_lj) is
a circulant matrix determined by the n-tuple (Co’cx"' cn—1) if and only

if éj =¢, for j=0,1,2,...,n-1. We note that each diagonal vector

3
except a can now be identified by two names, i.e. éj or é-(n-j)’
and we will use whichever is the more convenient. To simplify the nota-
tion, since each vector éj has all components equal, we will drop the
distinction between the scalar component and the vector itself and simply
denote either or both by aj.

It is obvious that the sum of two circulant matrices is also circulant.
It is not quite as evident that the product AB of two circulant matrices
A and B 1s also circulant. However, this can be easily seen by writing
A= (aj) ,-(n-1)< j<n-1 as the sum of n circulant matrices Ak s
k=0,1,...,n-1 where Ak has its only nonzero entries given by the

diagonal a - Each Ak is simply a scalar multiple of a cyclic permuta-

tion of the rows of the nxn identity matrix. We now write

AB=(A +A + **+A )*B=AB+AB+++++A B,
0 1 n-1 0 1 n-1

Each of the terms AkB is a circulant because multiplying by A.k
simply scales the entire matrix B and cyclically permutes its rows.

Thus AB must be a circulant matrix and we have the following lemma.

Lemma 1:
If A and B are circulant matrices and C=AB, then C

is a circulant matrix.

It will be useful to develop a simple formula using the current
notation for computing the product of two circulant matrices. If

A= (aj) , B=(b,), and C= (cj) for ~-(n-1)<j<(n-1) are circulant

3
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matrices such that C=AB, then C may be computed by the following

formula:
n-1
¢h) cj=kz=:0 akbj-k for j=0,1,...,n~-1.

Since C 1is completely determined from the n scalar entries of its
first row, this formula is most easily verified by just computing these
values. This result also may be verified by applying the matrix multi-.
plication by diagonals algorithm of Madsen, Rodrigue and Karush [6]

to circulant matrices. We note that the diagonals of A and B which
contribute to forming the j-th diagonal cj of C have respective

subscripts whose sum is j.

Shifted-Symmetric Circulant Matrices

We will primarily be dealing with the subclass of symmetric circulant
matrices (aj = a_j for j=0,1,...,n-1). However, there are two other

)

subclasses of circulant matrices which will be very useful. Let A= (a

3

be an nxn real circulant matrix. We define A to be upper or lower

shifted-symmetric if and only if

or a .,=a respectively,

7% 3h -3 %3-1

for j=1,2,...,n-1,
Shifted-symmetric circulant matrices have the following properties.

Lemma 2:
Let A and B be upper (lower) shifted-symmetric circulant
matrices, then C=A+B 1is also an upper (lower) shifted-symmetric

matrix.



Proof:

Obvious.

Lemma 3:

Let A be an upper (lower) shifted-symmetric circulant matrix
and let B be a symmetric circulant matrix. If C=AB or C=BA, theﬁ
C 1is an upper (lower) shifted symmetric circulant matrix.

Proof

We will prove only the case where C=AB and A is upper
shifted-symmetric as the other results follow in an almost identical way.
We first note that from lemma 1 C will be a circulant matrix.

Next we suppose that A 1is such that its only nonzeros lie on the diag~-
from shifted-symmetry. From (1)

onals a and a where a =a
P = P

ptl -p+l

and the fact that a_ we have

p+l =4 (p-1)

n-1
. = b, ,=ab. + b,
‘i kz;oak j-k " %p73-p " *n-(p-1) j-n+p-1
and since C is a circulant

n-1

-3+1 " Sn- G-1) - kgo ' . GG-1)-k apbn—j+l—p ta,. (p—l)bn- (j-1)-nt+(p-1)

=3P (jon-p+1) T 2n-(p-1)P-(5-p)

for j=0,1,...,n-1. The symmetry of B now allows us to conclude

that cj =c or that C 1s upper shifted-symmetric. In the case

s

(which can occurwhen n is odd) that ap and a_ are the same diag-

pt+1
onal of A we have n-(p-1l)=p or n=2p-1 and that




...=ab R =ab . =ab ,,
Coj41” % n-(G-1)-p  p 2p-1-(G-1)-p  p -(i-p)

and again the desired result follows from the symmetry of B. The full
proof of lemma 3 now follows easily from lemma 2 and the fact that A
is easily decomposed into a finite sum of upper shifted-symmetric matrices

of the form above for which we have established the desired results.

Lemma 4:

Let A be a lower shifted-symmetric circulant and let B be an
upper shifted-symmetric circulant. If C=AB or C=BA, then C is a
symmetric circulant.
Proof :

The proof is essentially identical to the proof of lemma 3 and

will be omitted.

Lemma 5:

If A is an nxn lower or upper shifted-symmetric circulant
matrix where n is even, then A 1s singular.
Proof:

If x an n-vector such that xT==(l,-1, 1,-1,...,-1) then

a straightforward calculation shows that Ax=0.

I1I. Basic Algorithm

We will now consider the original problem of solving a linear system
of equations Ax=b where A 1is an nxn real nonsingular symmetric
circulant matrix. We will also assume that n=29 for some positive

integer q>1 . The solution of such matrix problems is often required

-7-



when numerically solving certain types of elliptic and parabolic partial
differential equations when periodic boundary conditions are applied.

The basic idea of cyclic odd-even reduction is to reduce the problem
of solving Ax=b to that of solving a smaller problem (n/2xn/2)
Ax =b where A has the same basic properties as does A and x is
subvector consisting of only the even subscripted unknowns of the original
vector x. The process is then repeated on the reduced problem Ax=b.
We terminate the process after q-1 reduction stages when the remaining

system is 2Xx2.

More specifically we will define a permutation matrix P such that

PAPT has the form

where A1 and A,, are symmetric circulants and A2 and A are
3
respectively lower and upper shifted-symmetric circulants. Next, we will

constructively show how to define a matrix Q such that

where KI is diagonal, Kz is a lower shifted-symmetric circulant and
K“ is the n/2xn/2 reduced symmetric circulant matrix. The solution

of Ax=b 1s then equivalent to the solution of the system
T
[QPAP™] Px=QPb

-8-




which can now be solved by solving the reduced problem AX=5h .

The matrix P is the nxn odd-even permutation matrix [7 ] which
is obtained by permuting the rows of the nxn identity matrix so that
the odd numbered rows appear sequentially first and the even numbered
rows appear sequentially last. When A 1is a symmetric circulant matrix

of the type we are considering, it not difficult to verify that

B
(2) pAP. =

has the following properties:

1. A1 and Au are n/2 xn/2 symmetric circulants and in fact

2. A2 is an n/2 xn/2 lower shifted-symmetric circulant,

3. A is an n/2xn/2 wupper shifted-symmetric circulant,

Diagonal Elimination

We will now describe how to construct the reduction matrix Q. The
matrix Q will be the product of a sequence a matrices Qi each having

the form

(3) Q =

or



I 0 } n/2
(4) Q =

S I

where T and S are respectively lower and upper shifted symmetric
circulants, each having at most two nonzero diagonals.
We will identify the diagonals of the matrices A1_.Au of (2) and

T and S of (3) and (4) by
A = (aj),—(m—l)fj <m-1

A = (bj) »—(m-1)<j

IA
B
]

=

A = (e)),-(m-1 <]

A
B
i

ju—

A = (@), -@-1<I<m-1
T o= (t),-@-D<jcm-1

s = (sj) ,-(m-1)<j <m-1 where m=n/2 .

The reduction process will be constructed in n/2 stages, each stage
having two steps. For the initial presentation we will assume that PAPT

has no zero entries and that no zeros other than those specifically

desired are introduced into the matrix at any stage.

Stage 1
Step 1. Eliminate the diagonal Em/z in Afl).
i 2n/2
We define the matrix Q by letting t =t = - ———, and
1 0 -t 2¢
m/2
tj =0 for j=1,2,...,m-2. Clearly T 1is a lower shifted-symmetric

circulant with two nonzero diagonals. Now we compute

-10-




— _
A(1) A(1)
1 2
Q paPT =
1 A A
3 4
(1) (1)

and note that A =A1+'1‘A3 and A =A2+TAQ . Since T 1is lower

1 2

shifted-symmetric and A“ is symmetric, we have from lemma 3 that A(l)
2

is a lower shifted~symmetric circulant as was A2 . Also, from lemma 4

we have that Afl) is a symmetric circulant. Moreover, we have from
(1) that

- - +

%n/2 T 2m/2 o n/2 + ta-1 “n/2 - (m-1)

ansatt a2t Cpnion

+t

am/2+tocm/2 -1 Cm/Z

= - -t =
ap2~%aym%a,=0

so that the diagonal am/Z has been eliminated from Afl)

= - (1)
Step 2. Eliminate the diagomnals Cn/2 and € _m/2+1 in Aa
(Note that /2" c—m/2+l') .

We define Q by letting s =38 =--—JELZ— (the other diagonals of S
2 0 1 a
m/2-1
being 0) and compute

A1) A(1)

1 2

QZQIPAPT -

A0 A(1)

3 4

L -]
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(1)

(1) . As in step 1, A3

2

where A(‘)=A3+SA(1) and A(1)=Au + SA and
1

3 [N

A(l) have the same respective symmetry properties as do A3 and Au .
4

Also, we have

+ Soam/2 + s a /2-1

m/2 = Cn/2 1 m

Cn/2 7 %.%m/2-1

= Cn/2 " cm/2 -

From upper shifted-symmetry we have that c¢ —o/2+1 =0, so we see that

)

Q2 eliminates two diagonals in A3 This completes Stage 1.

Stage 2
. : - . (2)
Step 1. Eliminate the diagonals af(m/Z-—l) in A1
a
We define the matrix Q by setting t = t = - m/2-1
3 0 ‘m/2-1
and compute
[ ]
A(2) A
1 2
T
Q3Q2Q1PAP -
JRES I N CY
3 p—
where A(2)= A‘l) + T A(l) and A(Z) = A(l) + TA(I). Again from

1 1 3 2 2 L3

lemmas 3 and 4, Afz) and Agz) have the desired symmetry properties,

- (2)
Computing ap/2-—l in A1 we have

a/2-1 = %n/2-1 15 n/2-1 m-1%/2-1-(m-1)

=3y2-1%t /21t o1 Cm/2

T %nj2-17%2-1%0 7 O

~12-




By symmetry thils shows that a_(-m/-2 -1) = 0 . Moreover., the zeros intro-

(1)

) is upper shifted-symmetric and

duced in Stage 1 remain because A

3n/2 T 3/2 + to cm/2+ tm—lcm/2-—(m—1)

= 0 + O + tm—lc—m/2+1= 0.
Step 2. Eliminate the diagonals Em/2 -1 and E-—m/2+2 in A§2)
c
We define Q by setting s =s = - _:nﬁ_-_l_ and compute
y 0 1 a
m/2 -2
RO NGO
T 1 2
QQQQPAP" =
4321 )
[ 3 A

(D) 454 | ag before, a(?)

1 4 4 2 3

where A§2)= A§1)+ SA(Z) and A(2)= A

and AEZ) have the desired symmetry properties. We also have

C_m/242 = Cm/2-1 " Cw/2-1t S2m/2-17 S,%m/2 -2

0-c¢c

=cp2at n/2 -1

and

c—m/2+1= Cm/2 = cm/2+

soam/2+ slam/2 -1

= 0+ 0+ 0 =0

so the desired diagonals have been eliminated and those previously

eliminated remain zero.

-13-



Notice that we are establishing a band of zeros (aj =0 for
m/2-1< j<m/2+1 and Cj=0 for m/2-1<j <m/2+2) both above
and below the main diagonal.

We now proceed inductively and assume that stage k of the process

(k)

1

circulant and that a, =0 for m/2-(k-1) <j <m/2+(k-1) and

has been successfully completed and that A = (aj) is a symmetric

Ask) = (Cj) is an upper shifted-symmetric circulant with cj =0 for

m/2-(k-1) < j <m/2+k. We now proceed to the next stage.

Stage k+1
Step 1. Eliminate the diagonals 5'+(m/2—k) in Afk'*' l).
®m/2-k
We define Q2(k+l)—l=Q2k+1 by setting t =t m

and compute

A(k+1) A(k+l)

1 2
T _
Ui +1 Q- P4 =
RS RS
3 Y

where Afk+l) = Afk)+TA(§() and Az(k+l) = Aik)+TAz(k) . From lemmas
3 and 4, Afk+l) and A§k+1) have the desired symmetry properties.
Also

+

q4m/2-%) - Pw/2-kt o Cm/2-k T m-1%n/2 -k -(m-1)

a +

S 8%/2-kx %m/2-k T tm-1%m/2-k +1

0+t 0

m-1 Cm—(m/2+k—l) = tm-lcm/2-k+1=

-14-




from the induction hypotheses. To complete this step we need to verify

that 5j=0 for m/2-(k-1) <j <m/2+(k-1) . Let ap be one of

these diagonals. We have

Wy
L]

ap + tacp + tm -1 cp_ (m-1)

0

0+ 0 + tm—lcm— (m—‘p-—l)=tm—lcp+1 =

from the induction hypotheses since m/2-(k-1) < p+1 < m/2+k.

- - (k+1)
Step 2. Eliminate the diagonals Cn/2 -k and C_m/2+k+1 in A3 .
c
- - =._.-m/2-K
We define Q2k+2 by setting s0 = s1 = - and compute
m/2 - k-1
A(k+l) A(k+l)
1 2
Qy 0 qQ Pap" =
2k +2 *2k+1 77"
A(k+l) A(k+1)
3 y
L ]
where A§k+l) = Agk)+SA1(k+1) and A§k+l) = Afk)+SA§k+1) . Lemmas
(k+1) and A(k+l) have the desired

3 and 4 allow us to conclude that A3
Iy

symmetry properties. Also

c-m/2+k+1= cm/2 -k= cm/z -k =0 as before.

+ 0%m/2 k7 $.%m/2 -k-1

Now compute Ep where m/2-(k-1) < p < m/2+k . We have

c +s a +s a
p P opP 1p-1

0l
]

0+0+0=20

from step 1 and the induction hypotheses.

-15-



This completes the description of the basic algorithm. After m/2

2 ,
stages the reduction is complete since Agm/Z) = R Afm/ ) is a diag-

(m/2)

[N

onal matrix and A is the reduced symmetric circulant.

The basic algorithm as described above can fail at either step 1
or step 2 of any stage if the diagonal used as a divisor in that step
is zero. We will now discuss how to overcome this difficulty. Suppose

at stage k+1 and step 1 the divisor diagonal c 0 . In this

m/2-k=

case we search the remaining diagonals cJ., for 1 <3< m/2-k for the

nonzero diagonal with the largest subscript less than m/2-k and use

this as our divisor. Let ¢ » where 1 <p <m/2-k-1, be

m/2-k=-p

the divisor diagonal. Next we define Q2k+1 by setting tp= t_p+1=

_am/2 -k
Cm/2 -k-p

compute

and by setting the remaining diagonals to zero. Now we

S m/2-k) ~ 2m/2 -kt Cn/2-k-pt tm-(p-1) /2 -k -m+ (p ~1)

an/2 -k " 2m/2 -kt ta-(p -1) S~ (/2 +k -p +1)

= 0+ tm—(p—l) cm—(m/2+ k-p+1) = t:m— (p-1) Cm/2 -k+p-1

Since p # 0, the induction hypothesis may be extended so that

Agk)=(c) is such that cj=0 for m/2-(k-1)-p< j <m/2+k+p.

A
A routine calculation now shows that m/2-k+p-1 1lies within this

range so we conclude that

a-i-(m/Z—k) =0.

We have left to show that the previously eliminated diagonals are left

undisturbed by this modification. Let Eq be such that

-16~




m/2- (k-1) <gq < m/2+ (k-1). Then,

a =a + + c =tc +t c
%9 T %q tpcq-p tm—(p—l) q-(m-(p-1)) Pq-p -p+l q+p-1 .

A simple calculation shows that both subscripts q-p and q+p -1 1lie

-

within the range of the extended induction hypothesis above so aq= 0.

(k)

If at some stage the search for a nonzero diagonal of A
3

(k):o
) =

yields

the conclusion that A , then the problem splits into two problems

involving the symmetric circulant Al(k) and Afk).

Both of these matrices
must be nonsingular since A was assumed nonsingular, and the above
algorithm can then be applied to each.b

If the basic algorithm should fail during stage k+1 and step 2,
i.e. ;he divisor diagonal am/2—k—1= 0, then we search the
remaining diagonals Ej, for 0<j< m/2-k-2 for the nonzero diag—

onal with the largest subscript less than m/2-k-1 and use this as

our divisor. Let am/2—k-l—p , where 1< p<m/2-k-1 be this
c
. _ _m/2-k

divisor. is defined by setting sp

QU +2 =
m/2-k-1-p

and by setting the other diagonals to zero. Completely analogous cal-
culations now show this allows step 2 to be completed as before. 1If
the search for a nonzero diagonal divisor yields the conclusion that

Al(k+1) = 0, then we would have to conclude that the matrix

T R
Q2k+l...Q1PAP is singular because it is of the form
0 A(k+ 1)
2
ROERERG!
3 4

-17~




and AE) is upper shifted-symmetric and hence singular by lemma 5. This
would lead us to the conclusion that A must be singular which is a
contradiction. We must therefore conclude that the search for a non-
zero divisor diagonal will never fail in step 2 if A is nonsingular

to begin with.

This completes the description of one odd-even reduction step for
symmetric circulant matrices. After each reduction, another odd-even
reduction step may be performed on the resulting reduced matrix and
this defines the process of cyclic odd-even reduction. We terminate
the process when the reduced matrix is 2x 2 and solve this system
explicitly. The final solution is then obtalned by a back substitution
like process.

We have constructively and inductively proved our main theorem.

Theorem
If A is an n xn nonsingular, symmetric circulant matrix
where n=2" for some positive integer p>1, then the linear system

Ax=b may be solved by cyclic odd-even reduction.

We remark that the original work of Rodrigue, Madsen and Karush [7]
was directed toward the solution of banded matrices on vector processors.
In this paper we chose the non-banded setting. However, it should be
obvious that the above algorithm is applicable to'banded"symmetric

circulants, i.e. nxn symmetric circulants such that

an/Z:tj=0 for §=0,1,2,+++,q where 0 < q < n/2.

-18-




It can be shown that in this case, if one starts with a banded symmetric
circulant, then the reduced matrix will also be similarly'banded"with at

most the same number of nonzero diagonals as were in the original matrix.

IV. Quadratic Convergence

It has been proved [ 3 ], under certain dominance conditions, that
the off-diagonal elements of the reduced matrices converge quadratically
to zero when cyclic odd-even reduction is applied to certain tridiagomal
systems. We will now establish sufficient conditions which insure a
similar behavior when our cyclic odd-even reduction algorithm is applied
to pentadiagonal symmetric circulant matrices.

To illustrate the use of the algorithm, for "banded" matrices we

will let A be the nxn (n even) pentadiagonal symmetric circulant

1 b a a b
b 0 a
a
A=
a
a 0 b
b a a b 1|

The matrix Qq (the first of the reduction matrices which is not just

the identity’matrix) and PAPT are as follows

-19-



The matrices Qq+1

Qq+1

and QqPAPT of the next step are

2
where b'=b- —%

oo

T |
The final matrix Qqq_quPAP is shown next.

convenience we have scaled the reduced matrix A
4

diagonal is ome.
-20-
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so that its main




1L - <sa b
0 *
0
al
T_ L
Q1 QPAP =

oL
o
']
W
[0 B

w1

)

o |
=al}

L}
where b and a' are as before and

- 2
i = 2a-b
1~ 2b%+ 2a?
(5)
a~=——""—
1-2b2%+2a?

If we denote the diagonals of each succeeding reduced matrix by a; and
b, for i=1,2,..., with a =a and b°=b, then from (5) we see
that these diagonals satisfy the following recursion relations (until

the reduced matrix becomes less than 8x8 1in size)

a2

i
a = ——
i+1 2 2
1 2bi+2ai
2
. i 2ai bi
i+1

1-2b%2+2a2
i i

~-21-



We now state and prove a quadratic converge theorem concerning these

diagonals.
Theorem
1 1
< < = < =
If 0¢< a0 3 and |b0| 5 then
i
a (2 ) 5 (21_1)
a, <32 and Ibil < 3 max(2a°,bo)
i % 2
(%)
Proof:

The proof will be by induction. For i=1 we have

a2 a2 a.2 a 2
a = L < — < 2 =32 ,
! 1-2b%+2a? 1-2b2 3 3
0 0 0
2a - b? 2a 2a
b = 0 0 < 0 =% 0 ,
1 1—2bi+2a2 T3 3)?
and
2a -b2 -b? -pb? b?
b = 0 0 > 0 > 0 = _% 0
! 1-2b%+42a* 7 1-26%+2a® T % 3 ?
0 0 0 0
or
0
max(2ao ,bz) )
b <
b [ <3 -
€] :
For convenience we define d, = 1--2b?+2a2 and note that d >1%.
i+l i i 1 =2

We assume that the results are true for i and will show that this
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implies they are also true for i+1. We include as part of the induction

that di > % . First, we have

i
max(2a , b?) (2
0" o
i+

= 1_9h2 2 Con2s 1 o 2
dy = 1-2b3+2a] > 1-2b7>1 2(%)(

>1-23)* =% .

Also, ,
@
) 1+1
ai [%(g) ] a 2T
i+1 1-2b2 2 < ' - %( ‘%0 ) ’
- bi+2ai 3
i
2a, -b,? 2 (2) i
bi+l _ ai - i - i ai i2,[(3) ]___ 2(230)(2 )
1—2bi+2ai 3 3
i
max (2a ,bz) (27
B **
and
i-1, 2
[ ( max(2a , b2)52 )]
2 3
L (3)°
i+1 = -
3 %
i
(max(Za , b?) )(2 )
= -3 —0 0
(3)?
or
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21)

max(2a , b2)(
o
(3)*?

LI

which completes the induction and shows that the off-diagonal elements

converge quadratically to zero under the hypotheses of the theorem.
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